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The feedforward active control of the plate #exural wave transmission along a
semi-in"nite simply supported ribbed plate has been analytically and experimentally
investigated. The ribbed plate was modelled as a continuous system using equations of
motion to describe the plate in #exure and the beam in both #exure and torsion. Due to the
simply supported and in"nite boundary conditions, the structural response is described by
a combination of a modal and a travelling wave solution. The primary and secondary
sources are modelled as single point forces, with the primary force located on the plate and
the secondary control force applied to the reinforcing beam. This force con"guration is to
demonstrate the feasibility of attenuating the plate response by actively modifying the beam
response. Results show that using a single, properly located control actuator and a single
error sensor, global attenuation of the transmitted plate vibration through the reinforcing
beam is achieved.
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1. INTRODUCTION

Active control of the structural vibrations in many plate-type structures is of considerable
importance in the maritime and aerospace industries. Vibrations primarily exist in these
structures due to mounted machinery or engines, where the vibrating machine can be
idealized as a time-harmonic point force excitation on a plate. With signi"cant advances in
the technology of materials and electronics used in the components of an active control
system, active control will continue to receive considerable attention. Much analytical and
experimental work has been carried out to investigate the active control of homogeneous
beams [1, 2] and plates [3, 4]. However, the e!ect of a structural discontinuity such as
a reinforcing beam or a structural boundary on the vibrational response of a plate is to alter
the nature of the wave propagation in the structure. There has been very little work done on
the dynamic response of ribbed plates [5], and only a handful of researchers have examined
the active control of the response of ribbed plates [6, 7].

This paper is concerned with applying active control to the reinforcing beam of a ribbed
plate to reduce the vibrational response of the transmitted plate waves. The control
approach is a steady state feedforward model, where the optimal control force is obtained
from the quadratic minimization of a cost function based on the squared plate
displacement. Using a single control force located on the beam and a single error sensor, the
transmitted vibrational response on a semi-in"nite plate at a structural resonance frequency
can be signi"cantly attenuated.
0022-460X/01/060073#13 $35.00/0 ( 2001 Academic Press
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2. ANALYTICAL DEVELOPMENT OF THE BEAM-PLATE MODEL

The ribbed plate consists of a semi-in"nite elastic plate symmetrically reinforced by
two identical uniform beams of rectangular cross-section, as shown in Figure 1. The beams
and plate are simply supported at y"0 and ¸

y
, and the plate is in"nite in the x-direction.

The beams are located at x"x
b
. Point force excitation at a location of (x

0
, y

0
) is used

to model the vertically mounted primary shaker used in the experiments, and is described
by
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Due to the boundary conditions, the structural response is described by both a modal
solution in the y-direction, and a travelling wave solution along the x-direction. General
solutions for the primary plate response can be obtained for three regions of the plate
corresponding to
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where A
im

and B
im

are the coe$cients of the propagating waves, and C
im

, D
im

are the
coe$cients of the near-"eld decay waves. k

ym
"mn/¸

y
is the modal wavenumber along the

y-direction, where m is the modenumber. k
p
"(u2o

p
h/D)1@4 is the in vacuo plate #exural

wavenumber, where D"E
p
h3/12(1!l2 ) is the #exural rigidity of the plate, and o

p
, h, E

p
and l are, respectively, the density, thickness, Young's modulus and Poisson's ratio of the

plate. k
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are the wavenumbers in the x-direction of the

propagating and near-"eld decay waves, respectively, and are derived from the plate
classical equation of motion [4].

The beam}plate system is modelled as a continuous system using the equations of motion
to describe the plate in #exure, and the beams in both #exure and torsion. The beam #exural
Figure 1. A semi-in"nite simply supported ribbed plate showing the locations of the primary and control
shakers and the error accelerometer.
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and torsional equations of motion are derived as [5]
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where E
b
I and GJ are the #exural and torsional sti!ness of the beam, respectively, and o

b
A,

o
b
I
p

are, respectively, the beam mass and polar mass moment of inertia per unit length of
beam. Q

x
, M

xx
and M

xy
, respectively, represent the shear forces, bending moments and

twisting moments acting along the unit length of the plates in the y-direction, and are
described by the following classical relations:
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In equations (5) and (6), Q
x2

, M
xy2

and M
xx2

are the functions of the primary displacement
=p

2
in plate 2 as described by equation (4), and similarly, Q

x1II
, M

xy1II
and M

xx1II
are the

functions of the primary displacement in the second region in plate 1,=p
1II

, as described by
equation (3). Due to the boundary conditions, the general solutions for the beam primary
#exural and torsional displacement are described by a modal solution.

Twelve unknown coe$cients A
1m

, B
1m

,2, C
3m

and D
3m

in equations (2)} (4) can be
determined from (i) the continuity equations at the driving force location (x

0
, y

0
); (ii) the

continuity equations at the beam}plate boundaries (x"x
b
); and (iii) the structural

boundary conditions. At the driving force location, there are four coupling equations to
describe the continuity of the plate response, corresponding to the continuity of the plate
displacement, slope, moment and shear forces
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Four continuity equations to describe the coupling at the beam}plate boundaries are
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The ribbed plate is in"nite along the x-direction, and there are no re#ected waves from the
positive and negative in"nities. As a result, the coe$cients A

1m
, C

1m
, B

3m
and D

3m
are zero. It

is possible to solve for the remaining eight unknown coe$cients by making use of the eight
displacement continuity equations in equations (10)} (15). Using the equations of motion,
the continuity equations and the general solutions for the beam and plate displacements,
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the following matrix expression is obtained:

[a][A]"[F], (16)

where [a] is an 8]8 matrix, and is given in Appendix A. The coe$cient matrix [A] and the
force matrix [F] are given by
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Solutions for the unknown coe$cients of matrix [A] are determined by [A]"[a]~1[F].

3. ACTIVE CONTROL OF THE PLATE VIBRATION

A point control force of amplitude F
s
at a location y

s
on the beam generates secondary

#exural motion in the beam. The total force acting on the beam consists of two parts: the
point force excitation, and the net shear force acting at the boundaries between the beams
and plate, which is a result of the backward reaction from the plates acting on either side of
the beam [8]. The equation of motion for the secondary #exural waves of the beam excited
by a point force is
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where Q
xs1

and M
xys1

are the functions of the secondary #exural displacement in plate
1 (=s

1
), and similarly, Q

xs2
, M

xys2
are the functions of the secondary #exural displacement in

plate 2 (=s
2
). General solutions for the plate and beam secondary #exural displacements are
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where m@ is the modenumber of the secondary vibrations, and k
ym{

"m@n/¸
y

is the modal
wavenumber in the y-direction of the secondary waves. From the symmetry of the control
force application, the secondary displacements in plates 1 and 2 are the same [9]. U

1m{
and

U
2m{

are the amplitudes of the plate propagating and near-"eld decay waves, respectively,
and u

sm{
is the modal amplitude of the beam secondary #exural displacement. The same

continuity equations at the beam-plate boundaries exist under secondary excitation of the
ribbed plate. However, as the point force control is arranged to only excite the #exural
motion in the beam, the secondary torsional displacement in the beam is equal to zero.

Taking the following steps: using equations (7)} (9), (14) and (15) to determine the
expressions for the secondary moments and shear forces in terms of the beam secondary
#exural displacement; substituting the resultant expressions into the equation of motion
described by equation (19); multiplying the resultant equation by an orthogonal mode;
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integrating over the length of the beam; and making use of modal orthogonality
relationships, results in an expression for the modal amplitude of the beam secondary
#exural displacement described by
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and k
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b
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b
I)1@4 is the natural #exural wavenumber of the beam. Initial

examination of the beam secondary #exural amplitude as a function of frequency shows
that the maximum amplitude occurs in the vicinity of resonance frequencies, corresponding
to the modal wavenumber in the y-direction being equal to the beam #exural wavenumber
(k
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B
). It has been previously shown that the maximum plate primary wave

transmission by the reinforcing beam occurs at the structural resonance condition
occurring when the modal wavenumber of the primary incident wave in the y-direction is
equal to the natural #exural wavenumber of the beam [10]. As a result, the beam secondary
response is ampli"ed at the structural resonance conditions. At frequencies away from the
structural resonances, the secondary response is minimum.

The secondary #exural displacement in plate 1 can be obtained as
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represent the coe$cients of the secondary propagating and near-"eld decay waves
respectively. Similarly, the secondary #exural displacement in plate 2 is
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The plate vibrations are to be minimized at an error sensor location in the far "eld of plate 2.
The total #exural displacement in plate 2 is the superposition of the primary transmitted
#exural waves and the secondary #exural waves generated by the point control force, that is
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The primary transmitted #exural waves in the far "eld of plate 2 can be approximated from
equation (4) as
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Similarly, by considering only the propagating secondary waves in the far "eld of plate 2,
equation (26) can be simpli"ed as
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A cost function is developed to minimize the far "eld #exural energy transmission by means
of minimizing the total squared plate displacement at the error sensor. For an error sensor
location of (x

e
, y

e
) in the far "eld of plate 2, the total power #ow at the error sensor location
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By standard methods, the cost function can be expressed as a quadratic function of the
control force F
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Using the orthogonality relationship of the vibrational modes shows that the only
non-trivial solution for equation (34) occurs when m@"m, and yields
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Using standard methods, the optimal control force is obtained by di!erentiating the cost
function with respect to the real and imaginary components of the control force, where the
optimal force corresponds to both derivatives when they are zero [2]. The optimal control
force resulting in the minimum averaged squared plate displacement is obtained as
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and the corresponding minimum #exural energy transmission at the error sensor
location is
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4. EXPERIMENTAL ARRANGEMENT

4.1. EXPERIMENTAL SET-UP

The experimental rig consists of an aluminium test panel of dimensions 2)4 m]0)5 m,
with a thickness of 1)6 mm. The boundaries of the plate were constructed to simulate the
simply supported conditions on two parallel sides of the plate, and in"nite conditions on the
other two ends. The simply supported boundary conditions of the panel were implemented
by using strips of 0)9 mm thick aluminium cut into Z-sections. The upper #anges of the
Z-sections were attached to the edges of the panel by small screws at regular intervals. The
lower edge of the Z-section was clamped between the concrete blocks. This construction has
been previously shown to give a good approximation of a simply supported boundary
condition, as the aluminium strips are sti! for in-plane motion but #exible for rotation [10].
To simulate the in"nite boundary conditions on the other two edges of the test plate, each
panel end was mounted in identical, pyramid-shaded wooden boxes "lled with sand. This
con"guration resulted in the plate #exural waves travelling through the sand boxes to be
gradually absorbed by the sand, resulting in no re#ected waves from the plate edges. Hence,
the sand boxes served to make the plate appear in"nite in those directions. A length of 0)6 m
of the test plate was placed in the boxes at each end. This gave su$cient length at low
frequencies, such that the sand absorbed the structural vibrations with little re#ection from
the panel edges. The test plate for the experiments had a length of 1)2 m, which was su$cient
for the observation of both local and global attenuation.

The solid aluminium beams of length 0)5 m and rectangular cross-section of
10 mm]10 mm were symmetrically bonded to the surface of the plate using double-sided
tape, and were also screwed in three locations. The input disturbance shaker was mounted
vertically over the plate, in order to model the primary point force excitation. An impedance
head was placed between the electrodynamic shaker and plate in order to measure the
acceleration at the driving force location. A mini shaker was used as a control shaker, and was
mounted vertically over the beam. Figure 1 is a schematic showing the locations of the
primary and control shakers, and the accelerometer. The primary shaker is located at (x

0
, y

0
)

from the sand box and simply supported edge in plate 1, the control shaker is located at
a location of y

s
on the beam, and the accelerometer used to measure the error signal is located

at (x
e
, y

e
) in plate 2. Figure 2 shows a photograph of the experimental set-up, showing the

test panel, reinforcing beams, primary and control shakers, and the structural boundaries.

4.2. CONTROL SET-UP

Active control of the structural response at the error sensor location was performed using
feedforward control techniques. An adaptive "ltered-X least mean-square (LMS) algorithm
was used to conduct the control processing, and was implemented from a digital signal
processing board. The program code for the controller was supplied by Bao [11]. The LMS
control algorithm is described in detail by Elliott et al. [12].

A block diagram of the feed forward adaptive controller is shown in Figure 3. The
reference signal to the primary shaker was also fed into the controller. The error signal from



Figure 2. A photograph of the experimental test rig showing the simply supported and in"nite boundary
conditions, reinforcing beam and mounted primary and control shakers.

Figure 3. A block diagram of the feedforward adaptive controller.
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the accelerometer was also fed into the controller. The controller processed the signals, and
produced an optimal signal to drive the control actuator such that the error sensor signal is
minimized. The optimized control signal is adjusted by the FIR "lter. The weights of the
"lter are continuously updated using a "ltered-X LMS algorithm which minimizes the
signal obtained by the error accelerometer. In the experiments, the system identi"cation of
the secondary path was modelled by an FIR "lter with a "lter length of 64 weights, and the
sampling frequency was 2000 Hz.

5. RESULTS AND DISCUSSION

5.1. UNCONTROLLED RESULTS

The ribbed plate was constructed entirely of aluminium, where o"2700 kg/m3,
E"6)9]1010 N/m2 and v"0)33 are the material parameters. In the analytical modelling,
the internal distributed damping in the structure was included in the complex Young's
modulus by EI

p
"E

p
(1#jg), where g"0)001 is the structural loss factor.

A Hewlett Packard 35665A frequency analyser was used to generate a white-noise signal
to excite the plate at the primary shaker location of (x

0
, y

0
)"(0)2m, 0.31m). The primary



Figure 4. The analytical result of the primary beam response at f"312 Hz.
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shaker was located at a position of y
0
"0)618¸

y
along the width of the plate, resulting in

y
0
"0)31 m. This corresponds to a structural location which results in the excitation of all

the modes. In order to obtain the structural response contributed by all the excited modes, it
was important not to place the shaker at the node of the mode. A 2 g BruK el and Kjvr
accelerometer was used as the error sensor to measure the frequency response at various
locations on the plate. The signal from the accelerometer was fed back into the signal
analyser via a charge ampli"er. Resonance of the beams and plate was observed at
a frequency of 312 Hz, which corresponded to the second #exural resonance mode of the
beam in the experiments. Figure 4 shows the analytical primary response of the beam at
312Hz. As shown in the "gure, an excitation frequency of 312 Hz corresponds to the second
#exural resonance mode of the beam. This frequency was chosen at which to actively
attenuate the structural response.

Figure 5 shows both the analytical and experimental uncontrolled responses along the
x-direction for y"0)2 m and an excitation frequency of 312 Hz. This was experimentally
achieved by measuring the structural response at many discrete points along the x-direction
starting from the primary shaker location at x

0
"0)2 m, and the terminating close to the

sand box on plate 2. The reinforcing beams were attached at x
b
"0)5 m. Figure 5 shows

that the response of plate 1 is signi"cantly greater than that of plate 2. At this resonance
frequency, the beam already acts as a passive attenuator. Active control at the beam
response will further reduce the transmitted vibration.

5.2. CONTROLLED RESULTS

The control shaker was located at y
s
"0)31 m on the beam in order to excite all the

structural modes. In the analytical results, global control of the response in the far "eld of
plate 2 is achieved. Figure 6 shows the primary, secondary and total plate #exural energy
distributions along the x-directions, at y"0)15 m which corresponds to an anti-node, and
at a frequency of 312 Hz. In plate 1 (x(0)5 m), there is a slight increase in the total
response. However, in plate 2 (x'0)5 m), global attenuation of the vibrational response is
achieved, with more than 40 dB attenuation at the error sensor location. As expected, the



Figure 5. The analytical (**) and experimental (---r---) uncontrolled responses (y"0)2 m, f"312 Hz).

Figure 6. The analytical results showing the primary (**), secondary (*r*) and controlled (---]---) responses.
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secondary response is symmetrical around the beam, and matches the primary response in
the far "eld of plate 2. Figure 7 shows the contour plot of the attenuation level of the ribbed
plate obtained analytically for an error sensor location of (x

e
, y

e
)"(0)8 m, 0)15 m). This

"gure shows that the vibrational level in plate 2 has been globally attenuated using a single
control actuator applied to the beam and a single error sensor, with dramatic attenuation at
the error sensor location. In plate 1, the response has been ampli"ed along the length of the
beam. However, in this region, the primary response was dramatically attenuated by the
beam (see Figure 5). In the other regions of plate 1, the vibrational response has been both
increased by around 5 dB, as well as attenuated by 5 dB at other places.

In the experiments, active control of the structural response at a single error sensor
location of (x

e
, y

e
)"(0)8m, 0.2m) was performed for an excitation frequency of 312 Hz.

Figure 8 shows the uncontrolled and controlled responses along the x-direction for



Figure 7. The contour plot of the attenuation level of the ribbed plate obtained analytically.

Figure 8. The experimental results showing the uncontrolled (**) and controlled (*r*) responses.
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y"0)2 m. Between the primary shaker and the beam (0)2(x(0)5), there is very little
di!erence between the uncontrolled and controlled responses. The beam response
corresponding to x"0)5 m is only slightly attenuated. At the error sensor location
(x"0)8 m), approximately 40 dB attenuation was achieved. Signi"cant attenuation was
also achieved in a region around the error sensor location. Figure 9 shows a contour plot of
the attenuation level of the ribbed plate obtained experimentally. In this "gure, the
vibrational level in plate 2 has been globally attenuated. This result is obtained in addition
to the passive attenuation by the beam. At the error sensor location, 40 dB attenuation is
observed.



Figure 9. A contour plot of the attenuation level of the ribbed plate obtained experimentally.
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6. CONCLUSIONS

In this paper, active attenuation of the plate transmission through reinforcing beams in
a ribbed plate was both analytically and experimentally presented. The mathematical
modelling was based on a combination of a travelling wave solution and a modal solution.
For point force excitation of the ribbed plate, the results obtained from the analytical model
were found to agree very well with those obtained experimentally. The control approach
consisted of actively modifying the beam response in order to attenuate the plate waves
transmitted through the beam. From the uncontrolled results, it was shown that the beam
acts as a passive attenuator of the plate transmission through the reinforcing beam. From
the control results, the following observations were made:

f using a single control actuator and a single error sensor, global attenuation of the
transmitted #exural plate waves through the reinforcing beam was achieved;

f in both the analytical and experimental results, around 40 dB attenuation was observed at
the error sensor location; and

f under the control application, very little or no attenuation of the vibration levels in plate
1 was achieved.
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